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Anisotropic polydomain structure in a driven lattice gas with repulsive interaction
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Monte Carlo simulations are performed on a square lattice-gas model with a repulsive interaction
under the influence of a uniform electric field. Pair-correlation and particle-distribution studies show
those polydomain states with strips parallel to the driving field to be stable in the low-temperature
region. These results agree with the disappearance of the A singularity in the specific heat. The
formation of the anisotropic polydomain state may be explained by induced interfacial material
transport, leading to the instability of planar interfaces.

PACS number(s): 05.60.4+w, 05.70.Fh, 68.35.Fx

I. INTRODUCTION

The driven lattice-gas model was first introduced by
Katz et al. [1] to describe the particle transport in su-
perionic conductors {2,3]. This model allows us to study
the stationary states and the ordering process under the
influence of an electric field (for a review see [4]). Monte
Carlo (MC) simulations carried out on a half-filled square
lattice with attractive nearest-neighbor interaction have
shown that the particles segregate into strips parallel to
the electric field at low temperatures [1,5]. An exact cal-
culation on a 2 x 2 lattice has confirmed the priority of
the parallel interface to the perpendicular one [6]. The
stability of the parallel interfaces has been proven by a
number of authors [7,8]. The instability of the tilted in-
terface was first shown by Leung [9]. This morphological
phenomenon is analogous to the Mullins-Sekerka insta-
bility observed in crystallization [10,11] and explains the
formation of multistrip states in systems with shifted pe-
riodic boundary conditions [12]. Using numerical simula-
tion of the corresponding Cahn-Hilliard equation the ini-
tial stage of this anisotropic pattern formation has been
studied by Puri et al. [13] and Yeung et al. [14]

In driven systems the role of inhomogeneities (e.g.,
density fluctuations, interfaces) becomes very important.
Very recently Yeung et al. [14,15] have derived an in-
terface description from the Cahn-Hilliard equation and
found an instability mechanism due to the enhanced sur-
face current. A much simpler description of this mech-
anism is suggested by one of us [16]. These theoretical
investigations explain the formation of multistrip states
in such systems where the particle current is localized
at the interfaces because the instability and the ensuing
processes cut the large domains into strips parallel to the
driving field.

Half-filled driven lattice-gas models with repulsive in-
teraction have also been studied by several authors. In
such systems the theoretical approximations suggest an
ordering process corresponding to the formation of a
monodomain chessboardlike particle distribution. Ac-
cording to the dynamical mean-field theories [17,18] and
the renormalization-group calculation [19], the transition
temperature decreases with the electric field: it becomes
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zero above a threshold value and the ordering is com-
pletely suppressed in the strong-field limit. Analysis of
the critical behavior has shown that this driven system
belongs to the (equilibrium) Ising universality class [19].
Although several MC simulations [1] were performed on
this system with repulsive interaction the theoretical pre-
dictions have not yet been checked quantitatively. The
present work was initiated because of this deficiency.

Our MC simulations, however, do not confirm the basis
of the theoretical descriptions mentioned above. Instead
of an ordered monodomain state we observed the forma-
tion of an anisotropic polydomain state which is found to
be stable at low temperatures. This phenomenon is in-
duced by the interfacial material transport as has already
been described in the driven systems with attractive in-
teraction [14-16]. The enhanced material transport along
the “grain boundary” results in the instability of planar
interfaces and prevents the formation of large domains.
Consequently, the correlation lengths do not diverge;
there is no critical behavior. The system transforms
continuously into a self-organizing, anisotropic polydo-
main state at low temperatures. During this process the
equilibrium A singularity of specific heat becomes a wide
peak.

In the present work the stationary polydomain state
is studied by determining the transverse and longitudi-
nal correlation lengths. Our simulations are carried out
on a system whose sizes are chosen to be much larger
(as large as 300 x 1000) than the corresponding corre-
lation lengths (or domain sizes). This condition is not
satisfied in previous MC simulations [1,5] which suggest
(in contrast to our results) stable monodomain state and
isotropy in the low-temperature region. It is emphasized
that the monodomain state is not affected directly by
the mentioned interfacial instability therefore it may be
observed for a long time. However, there exists a nu-
cleation mechanism which is supported by the induced
interfacial current and this can lead to a transition of the
monodomain to the stationary, polydomain state, as dis-
cussed later. The efficiency of this mechanism depends
strongly on the temperature and field strength. The for-
mation of the anisotropic, polydomain structure from a
monodomain state becomes very slow at low tempera-
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tures and its rigorous investigation is beyond our com-
puter capacity.

In the next section we present the results of MC simu-
lations. An analytical description of the interfacial insta-
bility is given in Sec. III. The alternative picture of the
stationary states in the present driven lattice-gas model
is summarized in Sec. IV.

II. MONTE CARLO SIMULATIONS

We consider a lattice-gas model with repulsive nearest-
neighbor interaction on a square lattice for a fixed con-
centration ¢ = 1/2. The Hamiltonian is given by

H=J Z TN , (1)
(4,3)

where n; = 1 for an occupied site, n; = 0 for an empty
site and the sum is over the nearest-neighbor pairs. In
the lattice the particles can jump to one of the empty
nearest-neighbor sites. The jump rate from site ¢ to 7 is
biased by a vertical electric field F, namely,

(i —j)= ! 2)

(= 9) = T ep[(AH = BAy)/T) (

where AH is the energy difference between the final and
initial states, Ay is the vertical component of displace-
ment, and T is the temperature. For simplicity we choose
many parameters (i.e., coupling and lattice constants,
electric charge, Boltzmann constant) to be unity. (For
details of MC simulations see the review by Binder and
Stauffer [20].)

In the simulations we have used a rectangular box of
L x M sites with periodic boundary conditions. The sizes
are chosen to be greater than ten times the corresponding
correlation lengths. More precisely, L = M = 300 for
high temperatures (T > T, = 0.576) and the longitudinal
length is increased at low temperatures, e.g., M = 1000
for T < 0.42. To reach the stationary state the system
is thermalized for typically 10000-50 000 MC steps per
particle (MCS). Most of our simulations are carried out
for a fixed driving field E = 0.4.

Figure 1 displays a typical particle distribution for £ =
0.4 and T = 0.42. To visualize the domain structure of
sublattice orderings the particles are illustrated by boxes
whose size depends on the sublattice they are staying
at the given time. This trick results in a different gray
scale in the phases A and B as demonstrated in Fig. 1.
We could not observe any changes in the typical domain
sizes from t = 5000 MCS to ¢t = 1.2 x 105 MCS. Here
it is worth mentioning that similar domain structure has
been found under the same conditions when using the
Metropolis jump rate instead of the Kawasaki transition
rate given by Eq. (2). Decreasing the temperature the
anisotropy of domain structure becomes more and more
striking.

During the simulations we evaluated the pair correla-
tions,

(nonr) — (no)(nr)

(no)(n-)

g(r) = (3)

FIG. 1. Particle distribution and domain structure in the
presence of a vertical field E = 0.4 for T = 0.42. A 200 x 300
portion of the full 256 x 512 lattice is shown. The different
gray scale of domains is a consequence of the particle sizes
dependent on the sublattice.

along the longitudinal and transverse directions where
the indices 0 and r refer to sites on the same sublattice.
For high temperatures the pair correlation decreases ex-
ponentially, i.e., g(r) o< exp(r/{). The longitudinal and
transverse correlation lengths (§) are determined by a
fitting to MC data obtained by averaging over 200000
MCS. For low temperatures, however, an oscillation may
be observed in the transverse pair correlation, see curve
b in Fig. 2. Similar behavior has been found by Vallés
and Marro [5] when studying the multistrip state in the
driven lattice gas with attractive interaction.

A series of MC simulations was carried out to de-
termine the temperature dependence of the correlation
lengths. For low temperatures the transverse correlation
length is estimated from those data which satisfy the con-
dition g(r) > 0.05. The results are illustrated in Fig.
3. This figure demonstrates that the driven system re-
mains isotropic above the equilibrium 7,. On decreasing
the temperature the transverse correlation (strip width)
tends to be constant whereas the longitudinal correla-
tion increases monotonically. From the present data we
cannot conclude the singularity of the longitudinal corre-
lation length for finite temperature. Unfortunately, the
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FIG. 2. Pair correlation along the longitudinal (curve a)
and transverse (curve b) directions for T = 0.39 and E = 0.4.
The MC simulation is performed on a lattice of 300 x 1000
sites, the average is taken over 500000 MCS.

simulations for lower temperatures require a long time
because we need to increase the longitudinal box size (M)
in order to avoid the disadvantageous effect of periodic
boundary conditions. The size effect has been checked
for several temperatures. It is found that the results
obtained for larger systems agree with the plotted ones
within the statistical error whose value is indicated by
the symbol sizes in the figures.

Several simulations are performed for £ = 0.2 and 0.6.
Although the preliminary results suggest similar behav-
ior, the typical strip width increases when decreasing the
driving field.

During the above simulations the system energy was
also monitored. By this means we could evaluate the
average energy as a function of temperature. From this
data the specific heat is determined by a simple numerical
derivation. It is worth mentioning that here the specific
heat may not be derived from the energy fluctuations
because the fluctuation-dissipation theorem does not ap-
ply in driven systems [5]. The results are indicated by
the filled circles in Fig. 4. For comparison the equilib-
rium specific heat was also determined by using the same
method for E = 0 and L = M = 200 (see boxes in Fig. 4).
The contrast is conspicuous, the critical behavior is sup-
pressed by the driving field. This result is in close agree-
ment with the absence of singularity in the correlation
lengths (see Fig. 3). As expected, the temperature de-
pendence of specific heat becomes sharper and the peak
position tends towards the equilibrium T, for E = 0.2.

The disappearance of critical behavior may be ex-
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FIG. 3. Longitudinal ( e ) and transverse ( OJ ) correlation
lengths vs temperature for fixed external field £ = 0.4. The
equilibrium critical temperature is indicated by an arrow.
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FIG. 4. Specific heat of equilibrium ( O ) and driven ( o)
lattice gas for £ = 0.4.

plained by the instability of the planar interfaces, as is
discussed in the next section.

III. INTERFACIAL INSTABILITY

If one displays the time evolution of particle distri-
bution, one can easily observe that the particle trans-
port is localized at the interface separating the ordered
phases A and B. The interfacial current is determined by
the component of external field parallel to the interface.
Consequently, the current varies along a curved interface
and the inhomogeneous current leads to the formation of
regions with extra particles or holes (see Fig. 5). The
interface regions with extra particles (holes) are driven
upwards (downwards) leaving an ordered structure be-
hind. This mechanism drives the instability of the planar
interfaces.

The destabilizing effect of the interfacial current may
be described by introducing a simple formalism based on
the neglecting of interface thickness between the ordered
phases. In this case the interface evolution is given by a
curve {(z,t) in the two-dimensional Cartesian coordinate
system. The variation of the extra charge density o(x,t)
on the interface is determined by the interfacial current
j(z,t) induced by the vertical field E, namely,

o= — zj(zvt)) (4)

where 8, and 8, denote the partial derivatives with re-
spect to time and the x coordinate. We assume that the
current j(z,t) is proportional to the gradient of chemical

T

FIG. 5. Schematic plot of interfacial instability. The solid
lines indicate the interfaces between the ordered phases A
and B, bullets and open circles represent extra particles and
holes. The arrows show the direction of interfacial current,
the double arrows the motion of interface.
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potential u(z,t) for the interfacial particles, that is,

. du —00z
T,t) = —0— = (5
i) ds 1+ (3.0 (5)
where s refers to the derivation with respect to arclength
along the interface and o characterizes the (isotropic)
interfacial conductivity. The chemical potential is given
by a simple expression

Do

umJ)z—EC+ﬁ:7azﬁﬁ5,

(6)
where the first term is the contribution of the vertical
field E. The second term is introduced to describe the
diffusion along the interface (D > 0). In the absence of
an electric field this term results in a homogeneous inter-
facial charge density (p = 0 for ¢ = 1/2). In the above
description we have neglected the variation of charge den-
sity caused by the interfacial evolution.

In the present lattice-gas model the bulk conductiv-
ity strongly depends on the concentration at low tem-
peratures. It has a sharp minimum at the concentra-
tion ¢ = 1/2 we are interested in. Consequently, the
regions with extra particles (¢ > 1/2) are driven along
the field. Due to the particle-hole symmetry the ex-
tra holes are driven opposite to the field. In agreement
with this feature here we assume that the normal veloc-
ity of the interface v, = vE, g9, where E,, is the normal
component of the electric field, gy is the charge density
along the interface, and v > 0 may be considered as
the mobility of the interface. For E = 0 the motion
of interfaces is determined by the surface tension as it
was first described by Allen and Cahn [21]. These the-
oretical investigations suggested that the normal veloc-
ity of the interface is proportional to the curvature, i.e.,
v, = CO2.C/[1 + (8:€)?]3/? where coefficient C is re-
lated to the surface tension [21,22]. These mechanisms
are combined in the following simple equation of motion:

52

vEp L C 02.C . )
(1+(00%1/2 1+ (92()?]
In the above expressions the parameters may depend on
the temperature and electric field. In the low-field limit,
however, the field dependence is negligible. Substituting
Eqgs. (6) and (5) into Eq. (4) the differential equations
(4) and (7) have a trivial solution,

at( =

Colz,t) = yo + ma . (8)
oo(z,t) =0, 9)

corresponding to a neutral, tilted, planar interface with
slope m. The linear stability analysis of this interface
may be carried out by assuming a small periodic pertur-
bation, i.e.,

C(l”,t) — CO + 618/\t+ikm , (10)
Q(I,t) = 0o +6261\t+ikm’ (11)
where [d1],]d2] << 1 and k is the wave number. The
amplification rate A may be determined by linearizing
Egs. (4) and (7). From these linearized equations one

can obtain two solutions:
(C + oD)k? £ \/(C — 0D)%k* + 40vE2k?
2(1 +m2) ’

)‘1,2 =

(12)
It easy to see that A; > 0 for |k|] < ko if E # 0
where k2 = E%v/DC and A, < 0 for arbitrary k. This
result demonstrates that the planar interface is unsta-
ble against infinitesimal fluctuations for sufficiently long
wavelengths. In the limit kK — 0, A\; « |Ek|and A\; oc —k?
in the short wavelength region. This calculation suggests
no phase difference in the oscillation of ¢ and p for the in-
creasing modes. In the suppressed modes corresponding
to Az, however, { and p oscillate with opposite phases. It
is emphasized that the oscillations of ¢ and p are decou-
pled for £ = 0.

Equation (12) illustrates that the maximum value of
A is reached for m = 0. The amplification rate is de-
creased for the interfaces which are not perpendicular to
the driving field. More precisely, the instability vanishes
for m = oo, that is, the interfaces parallel to the driving
field remain stable.

Similar interfacial instability has been found for the
driven systems corresponding to the lattice gases with
attractive interaction [14-16]. However, a significant dif-
ference may be observed in the k dependence of A when
comparing the two systems. An analogous description
suggests A o« Ek%(k% — k?) for the systems with attrac-
tive interaction [16]. Consequently, the attractive system
exhibits a sharper maximum in A(k). At the same time,
the maximum value of A is proportional to E? in both
driven systems.

The instability of the planar interface has serious con-
sequences. This process may be considered as the initial
stage of an interface evolution cutting the large domains
into strips while the interfaces parallel to the driving field
remain stable. According to this picture, the typical strip
width is strongly related to the inverse of the wave num-
ber which is characterized by the largest positive A. Con-
sequently, the typical strip width is expected to be pro-
portional to 1/|E|. The finite strip size along the field
may be explained by the interface fluctuations whose ef-
fect is neglected in the above description.

The (low-temperature) monodomain structure does
not have a widespread interface that may be attacked
by the instability induced by the driving field. In this
state, however, the interfacial current can polarize the
small island of the other phase (see Fig. 5) formed ran-
domly in the system. The growth of polarized islands
is driven by the same mechanism described above. This
phenomenon may easily be observed in MC simulations
when choosing, for example, T' = 0.42 and F = 0.4.

The instability of the planar interface and the growth
of the “polarized islands” result in a stationary state with
striplike domains. More precisely, the competition be-
tween the traditional domain growth and the above inter-
facial instability leads to a “self-organizing” anisotropic
polydomain state. A better understanding of the inter-
face evolution, however, requires further analysis taking
into account nonlinearity, anisotropy, fluctuations, inter-
face thickness, etc.
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IV. CONCLUSIONS

Using MC simulations we have studied the stationary
states in a half-filled driven lattice-gas model with re-
pulsive nearest-neighbor interaction. In comparison with
the equilibrium state the driving field caused significant
changes in the stationary state at low temperatures. In-
stead of the ordered monodomain state we observed a
“self-organizing” polydomain structure if the system sizes
are chosen to be much larger than the typical domain
sizes. This domain structure is strongly anisotropic; the
ratio of the longitudinal and transverse sizes depends on
the temperature and field strength. The present simula-
tions suggest that the transverse domain size (correlation
length) tends to be constant if one decreases the tem-
perature for fixed driving fields. At the same time, the
longitudinal size of a typical domain increases.

In these anisotropic polydomain structures the tradi-
tional ordering is prevented by the driving field when
decreasing the temperature. Suppression of the critical
behavior is clearly demonstrated by the disappearance of
singularity in the specific heat.

The anisotropic polydomain structure has been found
to be stable for low temperatures. In this temperature
region the previous theoretical investigations suggested a
homogeneous state with long-range order. This expecta-
tion is motivated by the fact that during traditional or-
dering (E = 0) the polydomain structures transform into
a monodomain one via a domain growth mechanism. In
driven systems, however, the domain growth is strongly
affected by the interfacial material transport. The in-
duced particle current produces a charge redistribution
along the interface whose motion is determined by the
accumulated particles or holes. Neglecting bulk diffusion
and interface thickness we suggest a very simple model to
describe the initial stage of this process. This description
is restricted to the low-field (Ohmic) region. The present
model explains the instability of those planar interfaces
which are not parallel to the driving field. The instability
and the ensuing processes prevent the formation of large
domains. This phenomenon may easily be observed in
MC simulations for T' < 0.87, and E = 0.5 if the system
is started from a two-domain state with planar interfaces
perpendicular to the driving field [23].

We have concluded that competition between the tra-
ditional domain growth mechanism and the interfacial in-
stability controls the stationary domain structure. This
conclusion is confirmed by MC simulations performed on
suitably large systems. For small systems the longitudi-

nal strip size may exceed the (fixed) box size and the pe-
riodic boundary conditions result in closed strips on the
torus. In this domain structure the interfaces are par-
allel to the driving field therefore they are not attacked
by the instability mentioned above. In this case the ran-
dom motion of the interfaces increases or decreases the
strip widths. As a result a strip domain may disappear
and the average strip width increases with time. Finally
the system can transform into a monodomain state if the
process is not prevented by the nucleation mechanism
mentioned above. This phenomenon has also been ob-
served in our simulations when visualizing the evolution
of planar interfaces for low temperatures and small sizes.
This process resolves the discrepancy found in relation to
our results for previous simulations.

The effect of interfacial transport on the domain struc-
ture is not restricted to the present two-dimensional
model. Similar phenomena are expected to appear for
higher dimensions.

The enhanced interfacial transport is responsible for
the instability of the planar interfaces in driven lattice
gases with either attractive or repulsive interaction. The
analytical investigation of this phenomenon has cleared
up the differences between the two systems. On the one
hand, the equation of motion of the interfaces is derived
from a conservation law for the systems with attractive
interaction. Here, the interfacial current destabilizes the
interfaces if the field drives the particles out of the sur-
face. For a reversed field the interface is stabilized by
this mechanism. A linear stability analysis suggests that
the typical strip width is proportional to 1/v/E. On the
other hand, the interfacial evolution is coupled to the
variation of charge density along the interface if the in-
teraction is repulsive. The ordered phases (A and B)
separated by the interface are equivalent, therefore the
mechanism remains unchanged when reversing the field
direction. This more complicated mechanism leads to
a different k dependence of amplification rate suggesting
the characteristic strip width to be proportional to 1/|E|.
It is emphasized that both mechanisms predict increas-
ing strip width if E — 0, that is, the transition from
anisotropic polydomain to monodomain state is continu-
ous when decreasing the driving field.
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